Cardioprotection by a nonerythropoietic, tissue-protective peptide mimicking the 3D structure of erythropoietin.

نویسندگان

  • Hiroto Ueba
  • Michael Brines
  • Michael Yamin
  • Tomio Umemoto
  • Junya Ako
  • Shin-ichi Momomura
  • Anthony Cerami
  • Masanobu Kawakami
چکیده

Erythropoietin (EPO), originally identified for its critical hormonal role in regulating production and survival of erythrocytes, is a member of the type 1 cytokine superfamily. Recent studies have shown that EPO has cytoprotective effects in a wide variety of tissues, including the heart, by preventing apoptosis. However, EPO also has undesirable effects, such as thrombogenesis. In the present study, we investigated whether a helix B-surface peptide (HBSP), a nonerythropoietic, tissue-protective peptide mimicking the 3D structure of erythropoietin, protects cardiomyocytes from apoptosis in vitro and in vivo. In cultured neonatal rat cardiomyocytes, HBSP clearly inhibited apoptosis (approximately 80%) induced by TNF-alpha, which was comparable with the effect of EPO, and activated critical signaling pathways of cell survival, including Akt, ERK1/2, and STAT3. Among these pathways, Akt was shown to play an essential role in HBSP-induced prevention of apoptosis, as assessed by using a small interfering RNA approach. In the dilated cardiomyopathic hamster (J2N-k), whose cardiac tissues diffusely expressed TNF-alpha, HBSP also inhibited apoptosis (approximately 70%) and activated Akt in cardiomyocytes. Furthermore, the levels of serum creatine kinase activity and of cardiac expression of atrial natriuretic peptide, a marker of chronic heart failure, were down-regulated in animals treated with HBSP. These data demonstrate that HBSP protects cardiomyocytes from apoptosis and leads to a favorable outcome in failing hearts through an Akt-dependent pathway. Because HBSP does not have the undesirable effects of EPO, it could be a promising alternative for EPO to treat cardiovascular diseases, such as myocardial infarction and heart failure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin.

Erythropoietin (EPO), a member of the type 1 cytokine superfamily, plays a critical hormonal role regulating erythrocyte production as well as a paracrine/autocrine role in which locally produced EPO protects a wide variety of tissues from diverse injuries. Significantly, these functions are mediated by distinct receptors: hematopoiesis via the EPO receptor homodimer and tissue protection via a...

متن کامل

Erythropoietin and a nonerythropoietic peptide analog promote aortic endothelial cell repair under hypoxic conditions: role of nitric oxide

The cytoprotective effects of erythropoietin (EPO) and an EPO-related nonerythropoietic analog, pyroglutamate helix B surface peptide (pHBSP), were investigated in an in vitro model of bovine aortic endothelial cell injury under normoxic (21% O2) and hypoxic (1% O2) conditions. The potential molecular mechanisms of these effects were also explored. Using a model of endothelial injury (the scrat...

متن کامل

A small nonerythropoietic helix B surface peptide based upon erythropoietin structure is cardioprotective against ischemic myocardial damage.

Strong cardioprotective properties of erythropoietin (EPO) reported over the last 10 years have been difficult to translate to clinical applications for ischemic cardioprotection owing to undesirable parallel activation of erythropoiesis and thrombogenesis. A pyroglutamate helix B surface peptide (pHBP), recently engineered to include only a part of the EPO molecule that does not bind to EPO re...

متن کامل

Nonerythropoietic tissue protective compounds are highly effective facilitators of wound healing.

Erythropoietin (EPO) is a type I cytokine that utilizes different receptor isoforms either to maintain hematopoiesis or protect against injuries that arise from widely diverse etiologies. EPO also facilitates healing by reducing inflammation and mobilizing endothelial progenitor cells to participate in restorative neoangiogenesis, but it is unclear which EPO receptor isoform is responsible for ...

متن کامل

Erythropoietin-mediated protection in kidney transplantation: nonerythropoietic EPO derivatives improve function without increasing risk of cardiovascular events.

The protective, nonerythropoietic effects of erythropoietin (EPO) have become evident in preclinical models in renal ischaemia/reperfusion injury and kidney transplantation. However, four recently published clinical trials using high-dose EPO treatment following renal transplantation did not reveal any protective effect for short-term renal function and even reported an increased risk of thromb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 32  شماره 

صفحات  -

تاریخ انتشار 2010